If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2-12v-85=0
a = 1; b = -12; c = -85;
Δ = b2-4ac
Δ = -122-4·1·(-85)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-22}{2*1}=\frac{-10}{2} =-5 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+22}{2*1}=\frac{34}{2} =17 $
| 7=11-2r | | 4v=3v+14 | | 8+4x=-2=56-42x | | 3x-5=-8(6/5x) | | x+5+12.8=x-3+10 | | -3-8u=-4u+9 | | -22.04-(-18.48)+x=35.77 | | 142=-2+7n | | 11=3x=1 | | 8(3x-6)=24x-K | | 0m=-5 | | 32.4-a=8.4 | | (3.0075-6.0215)+y=-2.105 | | /6x-1=2(2x-3) | | 2z^2=-4z-2 | | 14-7x=-35 | | 7v-2=12 | | 3y+6/2=9 | | 2(k+3)=16 | | -4+4x+16=x+6 | | 12(2x+6)=5x-12-x | | y=6.2+5 | | X+20+5x+10=809 | | 4w^2+5=0 | | X+20+5x+10=189 | | 15=8(x-3) | | 25+x=45-x | | 4=(2+3z)= | | 5y^2-9y-9=0 | | 3x+5+121=180 | | x-4.080=-15.25 | | (X+6)+(6x)+(4x-2)=180 |